Active Balancing Mechanism for Imbalanced Medical Data in Deep Learning–Based Classification Models
نویسندگان
چکیده
منابع مشابه
On Mining Fuzzy Classification Rules for Imbalanced Data
Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...
متن کاملOn Mining Fuzzy Classification Rules for Imbalanced Data
Fuzzy rule-based classification system (FRBCS) is a popular machine learning technique for classification purposes. One of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. However many cases the minority classes are more important than the majority ones. In this paper, we have extended ...
متن کاملon mining fuzzy classification rules for imbalanced data
fuzzy rule-based classification system (frbcs) is a popular machine learning technique for classification purposes. one of the major issues when applying it on imbalanced data sets is its biased to the majority class, such that, it performs poorly in respect to the minority class. however many cases the minority classes are more important than the majority ones. in this paper, we have extended ...
متن کاملActive Learning for Imbalanced Sentiment Classification
Active learning is a promising way for sentiment classification to reduce the annotation cost. In this paper, we focus on the imbalanced class distribution scenario for sentiment classification, wherein the number of positive samples is quite different from that of negative samples. This scenario posits new challenges to active learning. To address these challenges, we propose a novel active le...
متن کاملa new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACM Transactions on Multimedia Computing, Communications, and Applications
سال: 2020
ISSN: 1551-6857,1551-6865
DOI: 10.1145/3357253